Traffic Accident Prediction Based on LSTM-GBRT Model
نویسندگان
چکیده
منابع مشابه
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولNetwork traffic prediction based on ARFIMA model
ARFIMA is a time series forecasting model, which is an improve d ARMA model, the ARFIMA model proposed in this article is d emonstrated and deduced in detail. combined with network traffi c of CERNET backbone and the ARFIMA model,the result sho ws that,compare to the ARMA model, the prediction efficiency a nd accuracy has increased significantly, and not susceptible to sa mpling.
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولNetwork Traffic Prediction Model Based on Catfish-PSO-SVM
In order to improve the prediction accuracy of network traffic, this paper proposes a network traffic prediction model based on support vector machine (SVM) which parameters are optimized by catfish particle swarm optimization algorithm. Firstly, the parameters of SVM are encoded as a particle, and then catfish effect is introduced to overcome the defects of particle swarm optimization algorith...
متن کاملTelephone Traffic Prediction Based on Modified Forecasting Model
This study presents a busy telephone traffic prediction model that combines wavelet transformation and least squares support vector machine. Firstly, decompose preprocessed telephone traffic data with Mallat algorithm and get low frequency component and high frequency component. Secondly, reconfigure each component and use LS_SVM model to predict each reconfigure one. Then the traffic can be ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Control Science and Engineering
سال: 2020
ISSN: 1687-5249,1687-5257
DOI: 10.1155/2020/4206919